
per unit volume of the mixture; i=F~pgradm: d, particle diameter; Cv, Cp, and Cs, heat 
capacities of the gas and of the particles; p, coefficient of viscosity of the gas, x~cp/c~. 
k ~=~•215 A, ratio of the reduced densities of the particles and of the gas; e = Acs/c p 
with T s = T and e~O with ~=0, A~0; X(0 , an arbitrary function of t; 8, Y, constants ex- 
pressed in terms of A, ~, ~ s, entropy of the gas; M and %, Mach and Khristianovich numbers; 
%,, subsonic velocity of the gas, corresponding to the critical velocity of the pseudogas; 

and ~, velocity potential and the stream function; 0, angle of inclination of the velocity 
vector to the x axis; P = i/~, Q = 0o/01%; ~ and o, coefficient and independent variable of 
the system of Chaplygin's equations. Indices: i, pseudogas, i.e., the equilibrium mixture; 
~, quantities in the unperturbed flow at infinity; 0, values at the point of stagnation of 
the flow; *, critical values of the quantities. 
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STATIONARY EXCHANGE BETWEEN AN INFILTRATED GRANULAR BED 

AND A BODY IMMERSED IN IT 

Yu. A. Buevich and E. B. Perminov UDC 532.546:536.242 

Stationary heat and mass outflow from a body in an infiltrated granular bed is 
studied taking into account the effect of the high-porosity zone near the surface 
of the body. 

Problems concerning the stationary transfer of heat or mass from bodies placed in a 
filtrational flow were first posed and studied for bodies with a simple shape in [i, 2]. In 
[3] this formulation was extended to nonstationary transfer processes with absorption in the 
volume of the granular bed. Here the presence of a thin zone, in which the transfer coef- 
ficients differ considerably from their effective values outside it, on the surface of the 
immersed body was completely ignored. This is completely justified, if the characteristic 
size of the body is much greater than the structural size of the bed (diameter of the parti- 
cles), and Peclet's number, constructed based on the size of the body, the filtration 
velocity, and the effective transfer coefficient, is not too large (see, for example, the 
experiments in [4]). When any of these conditions is violated, however, the existence of 
the indicated zone significantly changes the observed heat or mass flows compared to those 
determined theoretically neglecting this zone. 

The idea of a layer of high thermal resistance near the surface of a body has been in- 
troduced repeatedly in different semiempirical variants of the theory and has been discussed 
in connection with the problem of external heat transfer in fluidized systems (see the review 
in [5, 6]). In application to exchange between bodies and filtration flows in stationary 
granular fills, it was recently used in [7, 8], where the zone near the wall was viewed as 
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Fig. i. Profiles of the true and asymptotic 
average temperature at a solid wall with high 
(a) and low (b) thermal resistance of the 
zone near the wall. 

an analog of a viscous sublayer of a turbulent boundary layer in a slngle-phase medium. It 
is shown in this work that for a fixed temperature of the surface of the body in the flow 
in the granular bed, the presence of the surface zone can be taken into account by introduc- 
ing a boundary condition of the third kind on the surface, if the indicated zone has a high 
thermal resistance, and by giving a boundary condition of the first kind, not on the surface 
of the body itself, but rather at some distance away from it, if the resistance to heat 
transfer in the zone is lower than the resistance of the granular bed far from the body. In 
the first case, expressions are obtained for the stationary local and total heat flows from 
a flat plate, a cylinder, and a sphere. 

i. Temperature Jump at a Solid Wall. We shall study the distortion of the temperature 
field in a dispersed medium, associated with the presence of a solid surface bounding the 
region occupied by the medium, with the help of the models and methods developed in [9]. For 
simplicity, we first assume that the solid boundary is flat) the process of heat conduction 
is stationary, the temperature of the wall and the temperature field perturbed by the wall 
do not depend on the longitudinal coordinates, and there is no flow in the granular bed. 
If the linear scale of the problem is much larger than the radius a of particles in the bed, 
then the filled granular bed can be considered to be an approximately homogeneous uniform 
medium, characterized by an effective coefficient of thermal conductivity %, and at distances 
of the order of a from the wall 

T(y)~,To + AT + Ey, To + AT = Tly~o, E ~ dydT[u~o' (1) 

where AT and E do not depend on the transverse coordinate y. The flow of heat to the wall 
is, by definition, equal to hE. The problem consists of determining the relationship be- 
tween AT and E. 

Since the wall is impermeable to particles, the porosity and therefore the thermal 
conductivity in the thin zone near the wall differ from their values outside this zone. 
This leads to the fact that the average temperature of the dispersed medium Tw(y ) near the 
wail (coinciding with the average temperatures of the phases of the medium, if the contact 
conduction between the particles is neglected) differs from the asymptotic field T(y), as 
shown in Fig. i. The effect of the wall reduces to imposing on the possible configurations 
of the system of particles an additional nonholonomic coupling and is manifested primarily 
in the form of the single-particle distribution function. This function usually oscillates 
with increasing y, and the oscillations damp out at distances of the order of several a. 
For a layer which is nearly monodispersed, it is sufficient to assume in the first approxima- 
tion that there exists at the wall a "forbidden" region of thickness a into which the centers 
of the particles (which are assumed to be spherical) cannot enter, while outside this region 
different positions of the centers are equally probable. We then obtain the following ex- 
pression for the volume concentration of particles near the wall: 

Pw(Y)=P~(~), ~ (~)=1- - (1  + ~ ) ( 1 - -  ~ ~2, 
\ 2 ] 

(2) 
o ~ < ~ =  y ~<2, 

a 
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Fig. 2. Dependence of the parameter m on 8 (a) 
and of the relative heat flux q/qO on z = 6/2ma 

(b). 

and o(n) is identically equal to unity in the region n > 2. The function in (2) is analogous 
to the function examined in [9] in the calculation of the conditional volume concentration 
of particles near some individual particle. 

With the help of the method in [9] we can obtain the following relation for the average 
thermal conductivity in the region near the wall: 

X~(y) = ~o [I + (~ - -  1)e(~)], ~ = X/~o, (3) 

which transforms into the well-known formula for the effective thermal conductivity of a 
homogeneous medium, modeling the filled granular bed, for y ~ 2a. For a monodispersed 
layer, 8 depends only on p and %:/%o. There are a large number of studies concerned with 
the determination of this dependence; it was determined in [10-12] based on the method in 
[9] for concentrated systems with different assumptions on the form of the binary distribu- 
tion function for particles in the granular bed. 

The equation of stationary thermal conductivity at the wall, which taking into account 

(3) assumes the form 

6-7 T ey j 
with obvious boundary conditions Tw(0) = To and dTw/dy = E at y = 2, has the following solu- 
tion, taking into account (i), 

y/a 

T~(g) = To + aE~ 1 + (~ - -  1)o(n) (4) 
0 

The relations (i) and (4) together with the requirement T w = T at y = 2 permit finding 

the jump in the temperature AT at the wall 
2 

d~l 
AT=maE, m = ~  l + ( ~ - - l ) o ( ~ )  - - 2 ,  (5) 

0 

and the function o(~) is defined in (2). The dependence of the coefficient m on 8 is shown 
in Fig. 2a. If the thermal conductivity of the particle material is greater than the thermal 
conductivity of the liquid phase, then ~ > i, m > 0; in the opposite case, B < l, m < 0. 

It is first necessary to describe the external heat exchange, examining only the asymp- 
totic field T(y) in the uniform homogeneous medium with thermal conductivity %. In the two 
cases shown in Fig. i, this must be done with the help of different methods. If B > l, i.e., 
the zone near the wall is characterized by a high thermal resistance (see Fig. la), then a 
boundary condition of the third kind at the wall, obtained automatically from the defini- 
tions of T and AT in (i) and (5), 

dT 
T - - m a - - =  To, g = 0 (6) 

dy 

must be imposed on the solution of the heat-conduction equation. 

If B < i, i.e., the resistance to transfer in the zone near the wall is lower than the 
resistance outside the zone (see Fig. ib), then the boundary condition must be a boundary 
condition of the first kind, but imposed not at the wall itself at y = O, but rather at the 
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surface located at a distance y = y, away from it, and in addition the expression for y, is 
once again obtained from (i) and (5): 

T=To, y=y ,= lmla .  (7) 

Relations (6) and (7) evidently remain in force also in the case when To and T depend 
on the longitudinal coordinates and time, but the characteristic linear and time scales of 
this dependence are much greater than a and aac/X, respectively. Thus, the presence of a 
zone near the wall with different properties and with a fixed wall temperature can be taken 
into account within the framework of a boundary-value problem of heat conduction or convec- 
tive heat conduction in the homogeneous mediumwith uniform thermophysical properties. With 
a high thermal resistance in this zone, the analysis reduces to the solution of a standard 
boundary value problem of the third kind, and with a low resistance it reduces to the Solu- 
tion of the problem of the first kind, but in a region with a deformed boundary. We examine 
below only the first problem. With regard to the second problem we indicate only that its 
solution can be obtained with the help of the perturbation theory and, in addition, the solu- 
tion of the standard boundary value problem of the first kind with the boundary condition 
given directly on the surface of the body can be used as the zeroth-order approximation. 

In the presence of filtrational flow, in the general case, together with the molecular 
thermal conductivity it is also necessary to take into account heat transfer due to con- 
vective dispersion as a result of mixing and exchange between elementary streams, appearing 
with the flow past the particles in the bed. Because the molecular and convective dispersive 
transfer processes are statistically independent the corresponding transfer coefficients can 
be added. The coefficients of thermal conductivity, associated with convective dispersion, 
form axisymmetrical tensors, whose principal values corresponding to longitudinal and trans- 
verse transfer (i.e., in the directions of the local filtration velocity vector u and normal 
to it), can be approximately written in the form 

% ( 0 =  2k(!)codoau, k ( 2 1 =  kC31=/:k (1~, i = 1, 2, 3. ( 8 )  

The coefficients k(i) for small values of the Reynolds number, characterizing the flow 
around the particles, depend on it (see, for example, the review in [13]), which apparently 
reflects the effect of this number on the efficiency of exchange between separate elementary 
streams. To simplify the problem, we shall assume that these coefficients are constants, 
taking k(I) = 0.76 and k (a) = 0.19 in accordance with the theory in [14]. 

As the solid wall is approached, the constituent components of the convective heat- 
conduction tensors change from their limiting values (8) to zero. This is a result primarily 
of the corresponding change in the tangential component uw(y ) of the filtration velocity from 
the value u, formally obtained from the solutions of the equations of the theory of filtra- 
tion, to zero. To describe this phenomenon, it is necessary to take into account the tan- 
gential stresses in the filtration flow in the region near the wall as well as the dependence 
of the local average porosity on the distance to the wall in accordance with (2). For small 
Reynolds numbers for particles in the bed, the filtering liquid can be viewed as a simple 
Newtonian medium with an effective viscosity, whose dependence on the dynamic viscosity 
of the liquid and concentration of the granular bed was studied in [12]. For large Reynolds 
numbers an additional momentum transfer, arising due to the convective dispersion, must be 
taken into account and a component of the total effective viscosity of the filtering liquid, 
analogous to (8), must be introduced, which has still not been done. 

If the dependence uw(y) were known, then in the immediate vicinity of the surface it 
would be necessary to replace (8) by 

Z~ ) (Y) = %(~)~(~), (9) 

regarding the quantity T(n), increasing from zero at n = 0 to unity as ~ ~ ~, as a known 
function. The components (9) of the total thermal conductivity would also have to be in- 
cluded in determining the temperature jump at the surface. As a result, we would obtain 
the following expression for the coefficient m in (5)- (7): 

~ X o j 1 + ( ~ - - 1 )  a(n)+(X(2>/%o)T(n) - - n  �9 ( i 0 )  
o 

Thus, for a known function T(n) the parameter m must be viewed as some empirical quan- 
tity. From general considerations, however, it is clear that the functions ~ and o vary in 
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the same way as the distance from the wall increases and the difference between them probably 
falls within the limits of accuracy of the proposed analysis. If it is assumed that T = o, 
then the coefficient m, calculated from (i0), for B + %(2)/%o >> 1 is close to the coef- 
ficient determined from (5). In view of the approximate nature of Eqs. (9) this assumption 
is apparently completely admissible for 8 >> i, which corresponds, for example, to a granular 
bed into which gas infiltrates. 

Boundary conditions of the third kind with constant m were also applied in the study 
of the strongly nonstationary heat exchange between a solid wall and a gas-filled granular 
medium [5]. In reality, in this case, the coefficient m must depend on time, which is 
associated, first of all, with the presence of nonstationary fields of the average tempera- 
tures of the phases and, second, with the time dependence of the coefficient of interphase 
heat exchange. The fact that the results of the calculations with m = const agree quite well 
with the experimental data, even at short times after the beginning of the heat-exchange pro- 
cess, can be viewed as a good indirect confirmation of the reliability of the indicated 
boundary condition. 

2. Heat Flow Away from Submerged Bodies. We shall study below only the stationary 
convective heat-transfer processes neglecting the absorption of heat within the granular 
bed. In accordance with the results of the preceding section, the asymptotic temperature 
field in a uniform homogeneous medium surrounding a body with a fixed surface temperature 
can be found from the solution of the problem 

(uv)  T = V (D~vT), De = ke/codo, 
(11) 

T[v~| --+ O, T - -  maOT /Oy[v=o = To. 

The temperature is measured with respect to its value far away from the body. It is 
also necessary to impose the condition that the temperature vanish at the point at which the 
filtrational flow hits the body. The quantity %e in (ii) is the tensor of total effective 
coefficients of thermal conductivity with principal values %~i) = % + %(i), where %(i) are 
determined in (8). 

The "macroscopic" Peclet number, determined according to the linear size of the body 
in the flow, is usually much larger than one. In this case, the temperature changes con- 
siderably only within a thin thermal boundary layer and the problem (ii) is greatly simpli- 
fied. For example, for a flat plate oriented parallel to the stream lines, we have 

U OT (1 + ? ) O  a2T O - -  - - =  - - ,  , ~ = 0 . 3 8  aU 
Ox Oy ~ codo D (12)  

Tlx=o = T l v ~  = O, T--ma O--LlOy "v=o= To, 

where x is the longitudinal coordinate, measured from the front edge of the plate downstream 
along the flow, and y is a "microscopic" Peclet number, determined with respect to the struc- 
tural scale a of the granular bed. With m = 0 the solution of this problem is self-similar 
and has the form 

u y 6 = 2 [ ( l + ? ) D x ]  T = T ~ = T o e r f c q u - ,  

( 1 3 )  

q = q~ = - -  (1 + y) Dcodo [ = (1 -~ y) Dcodo 2T~ 
ov b=o V 6 

The dependences of T r on y/6 and of qO on 6 for bodies with a different shape coincide 
with m = 0 with (13); the form of ~he body only affects the dependence of ~ on the coordi- 
nates introduced on the surface of the body. For a cylinder in a flow moving normally to 
its axis and for a sphere the dependences of 6 on the corresponding tangential coordinate 
are determined in [1-3]. 

If m # 0, then the solutions of the problem (12) and analogous problems for bodies 
with a different shape are no longer self-similar, which is attributable to the appearance 
of an additional linear scale ma in the boundary condition. In this case, the temperature 
field depends not only on y/6 but also, for example, on y/ma, and the corresponding local 
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Fig. 3. Variation of the dimensionless thickness 
of the thermal boundary layer 2mz = 6/a along the 
surface of a cylinder (a) and of a sphere (b) 
with a = 0.01 and 0.05 (solid and broken curves, 
respectively); 1-3) Pe = 30, i00, and 300. 

heat flow from the surface of the body depends not only on 6 but also on the ratio of the 
scales ma/~, transforming into q. only in the limit ma/6 + 0. This flow, however, is deter- 
mined only by the local situation at distances of the order of a or 6 from the surface of 
the body. Since both of these dimensions are assumed to be much smaller than the charac- 
teristic size of the body, it may be assumed that the dependence of the local heat flux on 

and 6/ma will be the same for bodies with different form. The latter permits determining 
the indicated dependence by studying only the simplest problem (12) for a flat plate. 

Assuming that m ~e 0, applying the Laplace transformation to (12), solving the problem 
obtained for the ordinary differential equation, and calculating the inverse transform, we 
obtain instead of (13) 

T--eric Y--exp[ y § I (~) =] (i ~ )  To 6 ma T erfc + , (14) 

and f o r  6 (x)  t h e  f o r m u l a  i n  (13) i s  v a l i d  a s  b e f o r e .  The l o c a l  f l o w  o f  h e a t  f rom t h e  s u r -  
f a c e  c o r r e s p o n d i n g  to  (14) has  t h e  fo rm 

8 
q = (1 + ?)Dcodo To exp(z2)erfcz, z = (15)  

ma 2ma 

From (13) and (15) i t  i s  e a s y  t o  o b t a i n  an e x p r e s s i o n  f o r  t h e  r e l a t i v e  change  i n  t h e  
local heat flow as a result of replacing the boundary condition of the first kind on the sur- 
face of the body by a condition of the third kind, i.e., as a result of taking into account 
the presence of the zone near the surface with a high thermal resistance. We have 

= q/q~ = ~ ~ z exp (z D erfc z. (16) 

This quantity has the following asymptotic forms: 

~ - - ~ V ~ Z  , 1 ],/.~ Z,  , z ~ l ;  ~ l - - ~ 2 Z  ~ , z ~ l .  

The d e p e n d e n c e  (16) i s  i l l u s t r a t e d  i n  F i g .  2b,  whence i t  i s  e v i d e n t  t h a t  t h e  p r e s e n c e  
o f  an a d d i t i o n a l  ( " c o n t a c t " )  r e s i s t a n c e  a t  t h e  s u r f a c e  l e a d s  to  a c o n s i d e r a b l e  d e c r e a s e  i n  
t h e  h e a t  g i v e n  o f f  by t h e  body i n  t h e  f l o w ,  wh ich  i n c r e a s e s  a s  t h e  t h i c k n e s s  o f  t h e  t h e r m a l  
b o u n d a r y  l a y e r  d e c r e a s e s .  The t o t a l  h e a t  f l u x  f rom one s i d e  o f  t h e  p l a t e  o f  u n i t  w i d t h  and 
l e n g t h  x ,  m e a s u r e d  f rom t h e  f r o n t  edge ,  i s  o b t a i n e d  by i n t e g r a t i n g  t h e  q u a n t i t y  (16) w i t h  
r e s p e c t  t o  dx t a k i n g  i n t o  a c c o u n t  t h e  d e p e n d e n c e  o f  t h e  q u a n t i t y  z on x .  I t  i s  c o n v e n i e n t  
to study the ratio of this flow to its value with m = 0. We have 

Q(x) ( -~ ( f  dx ~-~ ~[z(x)l dx = 1 [1--exp(z~)erfczl ,  Q~ (x) q~ (x)l dx . q [z (x)l dx = 1 \J z (x )  ] . z ( x )  - - -~-z  (17) 
0 0 0 0 

where z is determined along the coordinate x of the back edge of the plate. 
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Total relative heat flow away from a 
cylinder (a) and a sphere (b) as a function 
of the Peeler number of the filtrational flow 
with m = 1.0 and 2.1 (solid and broken curves, 
respectively); 1-3) a = 0.01, 0.05, and 0.09. 

The dependences (15) and (16) are also valid for bodies with a more complicated form, 
but with definitions of y and 6 (or z) which differ from those for a flat plate. Using the 
results of [i-3], we can immediately write down: 

for a cylinder y = 0.76 (aU/D)sin0 and 

1 1 + cos  0 + 0 , 3 8 e  Pe  ~ - -  0 + , 
m z  - -  ~ K 2Pe sin 0 ( 1 8 )  

for a sphere y = 0.57 (aU/D)sin0 and 

m z  = ~ + cos 0 -  ~ + O. 14a Pe ( n -  O) + sin 20 - - -  . 
gsin~O \ 3---~e ] 3 ( 1 9 )  

Here 0 is the polar angle of a cylindrical or spherical coordinate system (the point at 

which the flow hits the body corresponds to 0 = ~), ~ = a/R and Pe = RU/D; in addition, U 
is the velocity of filtration of the unperturbed flow far away from the body. The angular 
dependences of the quantities (18) and (19) for different values of ~ and Pe are presented 
in Fig. 3. It is evident that the increase in both of the indicated parameters leads to a 
decrease in z and, therefore, to a decrease in the local heat flow away from the body, which 
is especially large in the bow region of the body, where the thickness of the thermal boundary 
layer is minimum. This leads, in particular, to the fact that the maxima of q as a function 
of 0, attained for values of aU/D which are not small at some distance downstream away from 
the point at which the flow hits the body [1-3], become sharper. 

For the total heat flow away from the body we have the following expressions: 

for a cylinder 

(I FS l 07 ope n0 Q _ 1 + 0.76c~ Pe sin 0 dO q? [z (0)1 dO, 

Q~ - z (o) z (o) 
0 0 

for a sphere 

(S )l S 1 0 7oposin0 Q _ 1 -~ 0 . 5 7 ~ P e e i n O  sin OdO 
Q~ z (o) z (o) 

0 0 

(20) 

cp [z (0)] sin OdO, ( 2 1 )  

where ~(z) is determined in (16) and z(0) in (18) and (19), respectively. The total flux 
Q~ from a cylinder and a sphere in the flow in the absence of a high resistance in the zone 
near the wall was calculated in [1-3]. The dependences of Q/QO on Pe for different values 
of m and a are presented in Fig. 4, whence it follows that the presence of a zone with a high 
thermal resistance leads to a considerable drop in the heat flow away from the body. This 
effect becomes stronger as m, a, and Pe increase, because in this case the relative role of 
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the indicated zone in the heat transfer process increases. An analysis shows that the indi- 
cated effect enables a satisfactory qualitative explanation of the experimental results in 
[4, 8]. 

In conclusion, we note that the results obtained are also valid for mass transfer be- 
tween bodies in a granular bed and the filtrational flow moving past them. 

NOTATION 

a, radius of the particles; c and co, specific heat capacities of the bed and of the 
liquid phase; D, thermal diffusivity (or the coefficient of diffusion) in the layer; do, 
density of the liquid phase; E, gradient of the temperature at the wall; k(i), coefficients 
introduced in (8); m, a parameter determined in (5) or (i0); Q and q, total and local heat 
flows away from the body; R, radius of the cylinder or sphere; T and To, temPerature and its 
value over the surface of the body; u , local filtration velocity vector; U, velocity of 
filtration of the unperturbed flow; x and y, longitudinal and transverse coordinates; z, 
dimensionless thickness of the thermal boundary layer; ~ = a/R; ~ = %/%o; Y, a parameter or 
a function characterizing the role of the convective dispersion; 8, thickness of the thermal 
boundary layer; n, dimensionless coordinate; %, %o, kl, thermal conductivities of the bed, 
of the liquid phase, and of the particle material; p, volume concentration of particles; o 
and T, functions introduced in (2) and (9); @, relative local heat flux; Pe = RU/D; the sub- 
script w refers to quantities determined for the zone near the wall, the superscript o refers 
to quantities calculated neglecting the zone near the wall. 
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